

October 20, 2025
2023-005.07

Ms. Mitzi Kim Rios
Los Angeles County Public Works
900 South Fremont Avenue, 2nd Floor
Alhambra, California 91803

**Re: Devil's Gate Reservoir Restoration Project – Phase 1 Restoration Qualitative Monitoring
Conducted on August 27, 2025**

1.0 INTRODUCTION

The purpose of this report is to document the results of qualitative (horticultural) monitoring conducted for the Devil's Gate Reservoir Restoration Project (Project), located in the City of Pasadena, Los Angeles County, California. The qualitative monitoring was conducted in the planted and or seeded portions of the Phase 1 mitigation areas including DG-1, DG-1 WOUS, DG-2A, DG-2B, DG-3A, DG-4, DG-4B, DG-4C, and DG-5. The monitoring is being conducted in accordance with the Final Habitat Restoration Plan for the Project (HRP). The initial sediment removal in the reservoir was completed in 2021 and the first round of the annual maintenance removal phase was completed in October of 2022. Currently, habitat restoration is occurring around the perimeter of the sediment removal areas and annual sediment maintenance will resume in summer of 2025.

ECORP is responsible for conducting qualitative monitoring and compliance review of restoration efforts in each of the mitigation areas. ECORP is also responsible for preparing monitoring reports, which typically include the following information:

- Overall health of container plants
- Observations and recommendations related to container plant establishment
- Germination of native plant species from seed application and natural recruitment
- Level of germination of nonnative plant species
- Soil condition
- Other observations and recommendations as appropriate

Qualitative monitoring was conducted by Carley Adams on August 27, 2025. Field data collected during the monitoring event is provided as Attachment A. This report documents the fourth biannual qualitative monitoring visit for the Phase 1 mitigation areas.

2.0 QUALITATIVE MONITORING IN PHASE 1 MITIGATION AREAS

2.1 Brief Summary of Plant Installation

During the Phase I Installation effort, which was completed on February 13, 2020, a total of 10,276 one-gallon container plants, 52 five-gallon container plants, 18 fifteen-gallon container plants, 300 acorns, and 3,000 cuttings were installed in the DG-2A, DG-2B, DG-3A, DG-4, DG-4B, DG-4C, and DG-5 mitigation areas. Container plants were not installed in the DG-1 or DG-1 WOUS mitigation areas, but these areas were seeded with native plant species. Table 1 lists container plant species and the numbers installed in each of the Phase 1 mitigation areas.

Table 1. Phase 1 Container Plant Species and Numbers (DG-)

Species Name	2A	2B	3A (Oak Wood- land)	3A (Mule-fat Thickets)	4 (CSS*)	4 (Mulefat- Willow**)	4B	4C	5	TOTAL
Mulefat (<i>Baccharis salicifolia</i>)	25	95	—	—	—	1113	135	114	64	1546
Mulefat [cuttings] (<i>Baccharis salicifolia</i>)	—	—	—	84	—	916	—	—	—	1000
Fremont's cottonwood (<i>Populus fremontii</i>)	10	38	—	33	—	479	54	45	27	686
California blackberry (<i>Rubus ursinus</i>)	10	38	—	33	—	619	54	45	26	825
California rose (<i>Rosa californica</i>)	10	38	44	33	—	725	54	45	26	975
Black willow (<i>Salix gooddingii</i>)	20	76	—	—	—	876	108	90	52	1222
Black willow [cuttings] (<i>Salix gooddingii</i>)	—	—	—	67	—	933	—	—	—	1000
Red willow (<i>Salix laevigata</i>)	10	38	—	33	—	439	54	45	26	645
Arroyo willow (<i>Salix lasiolepis</i>)	10	38	—	—	—	438	54	45	26	611
Arroyo willow [cuttings] (<i>Salix lasiolepis</i>)	—	—	—	33	—	967	—	—	—	1000
Black elderberry (<i>Sambucus nigra</i> ssp. <i>caerulea</i>)	5	19	—	17	—	594	27	23	13	698
California melic (<i>Melica imperfecta</i>)	—	—	20	—	—	—	—	—	—	20
Coast live oak (<i>Quercus agrifolia</i>)	—	—	174	—	—	—	—	—	—	174

Table 1. Phase 1 Container Plant Species and Numbers (DG-)

Species Name	2A	2B	3A (Oak Wood- land)	3A (Mule-fat Thickets)	4 (CSS*)	4 (Mulefat- Willow**)	4B	4C	5	TOTAL
Coast live oak [acorns] (<i>Quercus agrifolia</i>)	25	—	275	—	—	—	—	—	—	300
California gooseberry (<i>Ribes californicum</i>)	—	—	50	—	—	—	—	—	—	50
Mugwort (<i>Artemisia douglasiana</i>)	—	—	—	33	—	617	54	45	26	775
Wrinkled rush (<i>Juncus rugulosus</i>)	—	—	—	—	—	200	—	—	—	200
Basket rush (<i>Juncus textilis</i>)	—	—	—	—	—	100	—	—	—	100
California Sagebrush (<i>Artemisia californica</i>)	10	38	—	—	306	—	—	—	—	354
Coyote brush (<i>Baccharis pilularis</i>)	10	38	—	33		504	54	45	26	710
California brittlebush (<i>Encelia californica</i>)	—	—	—	—	102	—	—	—	—	102
California buckwheat (<i>Eriogonum fasciculatum</i>)	—	—	—	—	306	—	—	—	—	306
Menzies goldenbush (<i>Isocoma menziesii</i>)	—	—	—	—	41	—	—	—	—	41
Deerweed (<i>Acmspon glaber</i>)	—	—	—	—	102	—	—	—	—	102
Laurel sumac (<i>Malosma laurina</i>)	—	—	—	—	61	—	—	—	—	61
Coastal prickly pear (<i>Opuntia littoralis</i>)	—	—	—	—	41	—	—	—	—	41
Black sage (<i>Salvia mellifera</i>)	—	—	—	—	102	—	—	—	—	102
TOTAL	145	456	563	399	1061	9520	648	542	312	13646

*CSS = California Sagebrush – California Buckwheat Scrub

**Mulefat-Willow = Mulefat Thickets and Black Willow Thickets

All plants were installed according to the methods described in Section 4.11 of the HRP. Planting holes for all container plants, except oak trees, were dug to a width twice the size of the root ball and to a depth slightly deeper than the depth of the root ball so that the root crown was one inch below grade following installation. Oak trees were planted with the root crown 0.5 to one inch above grade following installation. Prior to installation, all plants were thoroughly watered in their containers and the soil in planting holes was wetted with at least one gallon of water. Planting holes approximately two feet in width were

backfilled with native soil and irrigation basins were formed around the base of each plant. Rocks greater than two inches in diameter were removed to the extent possible from the backfill soil. All container plants were irrigated with at least one gallon of water immediately following installation and basin creation.

2.2 Qualitative Monitoring Methods

Qualitative monitoring occurs monthly following the 120-day Plant Establishment Period for the remainder of Year 1 (8 months). Following Year 1, qualitative monitoring occurs quarterly during Years 2 and 3 and twice per year during Years 4 through 10. The purpose of the qualitative monitoring is to assess container plant health and vigor and monitor the success of the mitigation areas.

During the August 27, 2025 visit, all Phase 1 mitigation areas were walked, the health and vigor of container plants were documented, germination from seeding and natural recruitment was noted, and the level of nonnative and invasive weed cover was estimated for each of the Phase 1 mitigation areas.

2.3 Qualitative Monitoring Results

Overall, the Phase 1 mitigation areas appear to be performing moderately well. Evidence of dieback from *Phytophthora cactorum*, including wilting, stunted growth, leaf spotting, and/or browning along leaf margins and tips, was not observed in any of the mitigation areas during the monitoring visit. Drought stress from recent high temperatures and lower than average precipitation during the 2025 rainy season was observed throughout the Phase 1 mitigation areas. The irrigation for the Phase 1 mitigation areas was terminated in February of 2023 according to Section 4.6 of the HRP, which states that supplemental irrigation will continue to be applied for a period of no more than three years. The lack of supplemental irrigation and recent high temperatures appears to be the primary contributing factor to plant stress. Formal mortality counts were taken for the Phase 1 mitigation areas during the 2020, 2021, 2022, 2023, 2024, and 2025 quantitative monitoring events. Some of the container plants within the Phase 1 mitigation areas were noted as lacking well defined basins and should have their basins properly constructed and/or repaired. Some of the annual species were observed to be dead for the season. The installation of plants in the Phase 1 mitigation area appears to have been completed successfully and the current issues identified during the monitoring visit are not expected to influence the continued growth of the plants in the mitigation areas.

2.3.1 DG-1 & DG-1 WOUS

Container plants were not installed in the DG-1 or DG-1 WOUS mitigation areas, but these areas were seeded with native plant species. Native plant growth, including perennials and annuals, was noted throughout the DG-1 and DG-1 WOUS mitigation areas, likely both from natural recruitment and from seeding. The majority of DG-1 WOUS was noted as being scoured during the 2020, 2021, 2022, 2023, 2024, and 2025 wet seasons and had minimal plant growth. Native plants such as deerweed (*Acmonia glaber*), California sagebrush (*Artemisia californica*), common sand aster (*Corethrogyne filaginifolia*), Canada horseweed (*Erigeron canadensis*), California buckwheat (*Eriogonum fasciculatum*), scale broom (*Lepidospartum squamatum*), common phacelia (*Phacelia distans*), ladies' tobacco (*Pseudognaphalium*

californicum), and chia sage (*Salvia columbariae*) were observed sprouting in the DG-1 and DG-1 WOUS mitigation areas. Native cover for the DG-1 and DG-1 WOUS mitigation areas was estimated to be approximately 60 to 65 percent with some areas having relatively dense cover and other areas being scoured and/or having minimal cover. Photos 1 through 4 in Attachment B document the status of the mitigation areas during the monitoring visit.

Nonnative weed cover in DG-1 and DG-1 WOUS was estimated to be approximately 1 percent, which is approximately 1 percent lower than the level of weed cover that was observed during the previous qualitative monitoring event. Nonnative species observed in DG-1 and DG-1 WOUS during the monitoring visit included black mustard (*Brassica nigra*) and brome grasses (*Bromus* spp.). Most nonnative weeds were just starting to germinate and had not gone to flower or seed.

2.3.2 DG-2A

The overall health of the container plants in DG-2A was noted as being moderate. Approximately 30 percent of the container plants in DG-2A were noted as showing varied levels of stress, which is approximately 25 percent higher than the percentage of container plants that were showing stress during the previous qualitative monitoring event. Stress may be occurring as a result of 1) drought stress from recent high temperatures and below average rainfall levels, 2) competition from nonnative and invasive weeds and/or 3) recreational traffic through the mitigation areas. Additional missing or dead container plants were not observed. Photos 5 and 6 in Attachment B document the status of the mitigation area during the monitoring visit.

Native plant growth was noted throughout the DG-2A mitigation area, likely both from natural recruitment and from seeding. Native plants such as annual bursage (*Ambrosia acanthicarpa*), western ragweed (*Ambrosia psilostachya*), mugwort (*Artemisia douglasiana*), mulefat (*Baccharis salicifolia*), Canada horseweed, and telegraph weed (*Heterotheca grandiflora*) were observed sprouting in the DG-2A mitigation area. Native cover for the DG-2A mitigation area was estimated to be 75 percent.

Nonnative weed species were not observed within the DG-2A mitigation area during the monitoring visit and evidence of recent weed abatement was observed.

2.3.3 DG-2B

The overall health of the container plants in DG-2B was noted as being moderate. Approximately 25 percent of the container plants in DG-2B were noted as showing varied levels of stress, which is approximately 20 percent more than the percentage of container plants that were showing stress during the previous qualitative monitoring event. Stress was likely due to the same reasons as those described for DG-2A, especially drought stress. Photos 7 through 10 in Attachment B document the status of the mitigation area during the monitoring visit.

Native plant growth was noted throughout the DG-2B mitigation area, likely both from natural recruitment and from seeding. Native plants such as annual bursage, coyote brush (*Baccharis pilularis*), mulefat, Canada horseweed, telegraph weed, and stinging nettle (*Urtica gracilis* [formerly *Urtica dioica*])

were observed sprouting in the DG-2B mitigation area. Native cover for the DG-2B mitigation area was estimated to be 80 percent.

Nonnative weed cover in DG-2B was estimated at approximately 1 percent, which is approximately the same level of nonnative cover that was observed during the previous qualitative monitoring event.

Nonnative species observed in DG-2B during the monitoring visit included black mustard and poison hemlock (*Conium maculatum*). Most nonnative weeds were just starting to germinate and had not gone to flower or seed.

2.3.4 DG-3A

The overall health of the container plants in DG-3A was noted as being moderate to good and the willow and mulefat stakes are thriving in this mitigation area. Approximately 5 percent of the container plants in both the coast live oak woodland and mulefat thickets portions of DG-3A were noted as showing varied levels of stress, which is approximately the same percentage of container plants that were showing stress during the previous qualitative monitoring event. Some of the stress was likely due to the same reasons as those described for DG-2A. Erosion is also a problem in some areas of DG-3A along Altadena Drain and on the steep slopes in the coast live oak woodland area. During the monitoring visit, the planted coast live oak (*Quercus agrifolia*) acorns were inspected for survivorship and health. Approximately 20 germinated coast live oak acorns appear to still be present in DG-3A and are approximately five to eight feet tall. Most of the germinated acorns appear to be in good health. Previously documented branch failure on an existing coast live oak tree (Tree Tag #39) was still present; however, no new branch failure or damage was observed. The cause of the previously documented branch failure was unclear. Photos 11 through 16 in Attachment B document the status of the mitigation area during the monitoring visit.

Native plant growth was noted throughout the DG-3A mitigation area, likely both from natural recruitment and from seeding. Native plants such as annual bursage, mugwort, Canada horseweed, telegraph weed, and coast live oak (*Quercus agrifolia*) were observed sprouting in the DG-3A mitigation area. Native cover for the DG-3A mitigation area was estimated to be approximately 65 percent in the coast live oak woodland portion of the mitigation area and 75 to 80 percent in the mulefat thickets portion of the mitigation area.

Nonnative weed cover in DG-3A was estimated at approximately 1 percent, which is approximately the same level of nonnative cover that was observed during the previous qualitative monitoring event.

Nonnative species observed in DG-3A included black mustard and brome grasses. Most nonnative weeds were just starting to germinate and had not gone to flower or seed.

2.3.5 DG-4

The overall health of the container plants in mitigation area DG-4 was noted as being moderate to good. Approximately 10 percent of container plants in the coastal sage scrub portions of DG-4 and approximately 25 percent of container plants in the riparian portions of DG-4 showed varied levels of stress which is approximately 5 to 20 percent higher than the percentage of plants showing stress during the previous qualitative monitoring event. The causes of stress appear to be mostly due to the same

reasons described in DG-2A, especially drought stress. Photos 17 through 20 in Attachment B document the status of the mitigation area during the monitoring visit.

Native plant growth was noted throughout the DG-4 mitigation area, likely both from natural recruitment and from seeding. Native plants such as California sagebrush, mugwort, mulefat, California buckwheat, Canada horseweed, telegraph weed, ladies' tobacco, California rose (*Rosa californica*), Goodding's black willow (*Salix gooddingii*), Douglas' nightshade (*Solanum douglasii*), and stinging nettle were observed sprouting in the DG-4 mitigation area. Native cover for the DG-4 mitigation area was estimated to be approximately 70 to 75 percent in the riparian portion of the mitigation area and 65 to 70 percent in the coastal sage scrub portion.

Nonnative weed cover in DG-4 was estimated at approximately 1 to 5 percent, which is approximately the same as or slightly lower than the percentage of nonnative cover that was observed during the previous qualitative monitoring event. Nonnative species observed in DG-4 included tree of heaven (*Ailanthus altissima*), black mustard, poison hemlock, and perennial pepperweed (*Lepidium latifolium*). Nonnative weed cover, especially perennial pepperweed, is a significant problem in portions of the DG-4 mitigation area. Because perennial pepperweed can produce dense colonies through seed germination and underground rhizomes (rhizomatous roots), removal of this species without the use of systemic herbicide is very difficult. Most nonnative weeds were just starting to germinate and had not gone to flower or seed.

2.3.6 DG-4B

The overall health of the container plants in mitigation area DG-4B was noted as being moderate to good. Approximately less than 15 to 20 percent of container plants were showing varied levels stress which is approximately 10 to 15 percent higher than the percentage of plants that were stressed during the previous qualitative monitoring event. Stress was likely due to the same reasons as those described for DG-2A, especially drought stress. California dodder (*Cuscuta californica*), a native parasitic vine, was also observed growing on several of the container plants. A negligible number of container plants were noted as being missing or dead. Photos 21 and 22 in Attachment B document the current status of the mitigation area during the monitoring visit.

Native plant growth was noted throughout the DG-4B mitigation area, likely both from natural recruitment and from seeding. Native plants such as mulefat, Canada horseweed, common phacelia, and stinging nettle were observed sprouting in the DG-4B mitigation area. Native cover for the DG-4B mitigation area was estimated to be approximately 70 to 75 percent.

Nonnative weed cover in DG-4B was estimated to be approximately 2 percent, which is approximately 1 percent higher than the level of nonnative cover that was observed during the previous qualitative monitoring event. Nonnative species observed in DG-4B included black mustard, poison hemlock, and perennial pepperweed. Most nonnative weeds were just starting to germinate and had not gone to flower or seed.

2.3.7 DG-4C

The overall health of the container plants in mitigation area DG-4C was noted as being moderate to good. Approximately 10 to 15 percent of all container plants were noted as showing minor levels of stress, which is approximately 5 to 10 percent higher than the percentage of plants that were showing stress during the previous qualitative monitoring event. Stress was likely due to the same reasons as those described for DG-2A, especially drought stress. A negligible number of container plants were noted as being missing or dead. Photos 23 through 25 in Attachment B document the status of the mitigation area during the monitoring visit.

Native plant growth was noted throughout the DG-4C mitigation area, likely both from natural recruitment and from seeding. Native plants such as annual bursage, tarragon (*Artemisia dracunculus*), mugwort, coyote brush, Canada horseweed, and common phacelia were observed sprouting in the DG-4C mitigation area. Native cover for the DG-4C mitigation area was estimated to be approximately 70 percent.

Nonnative weed cover in DG-4C was estimated at approximately 1 percent, which is approximately 1 percent lower than the percentage of nonnative cover that was observed during the previous qualitative monitoring event. Nonnative species observed in DG-4C included black mustard and poison hemlock. Most nonnative weeds were just starting to germinate and had not gone to flower or seed.

2.3.8 DG-5

The overall health of the container plants in the DG-5 mitigation area was noted as being moderate. Approximately 50 percent of all container plants were noted as showing varied levels of stress, which is approximately 45 percent higher than the percentage of plants that were showing stress during the previous qualitative monitoring event. Stress was likely due to the same reasons as those described for DG-2A, especially drought stress. Photos 26 and 27 in Attachment B document the status of the mitigation area during the monitoring visit.

Native plant growth was noted throughout the DG-5 mitigation area, likely both from natural recruitment and from seeding. Native plants such as mulefat, Canada horseweed, California rose, and stinging nettle were observed sprouting in the DG-5 mitigation area. Native cover for the DG-5 mitigation area was estimated to be approximately 75 to 80 percent.

Nonnative weed cover in DG-5 was estimated at approximately 1 percent, which is approximately 1 percent lower than the percentage of nonnative weed cover that was observed during the previous qualitative monitoring event. Nonnative species observed in DG-5 included perennial pepperweed and white horehound (*Marrubium vulgare*). Most nonnative weeds were just starting to germinate and had not gone to flower or seed.

3.0 RECOMMENDATIONS

3.1 Container Plant Replacement

Container plants in Phase 1 that were noted as being dead during both the qualitative and quantitative monitoring events were replaced during the Phase 3 implementation during the winter of 2023/2024. Replacement of dead container plants will help to increase native cover and help the restoration sites move toward achieving their success criteria.

Container plant loss was most problematic in areas prone to erosion, areas prone to prolonged inundation, areas with higher levels of herbivory, and areas within the least Bell's vireo nest buffer where nonnative weed proliferation occurred during the active nesting period in the spring of 2020. It should be noted that natural recruitment and installation of replacement container plants have offset container plant loss due to the reasons listed above. Container plant mortality should continue to be assessed during the annual quantitative monitoring and supplemental planting should occur if the level of mortality exceeds the performance standards requirements.

In addition to container plant loss, loss of mature native trees such as Goodding's black willow, Fremont's cottonwood, and box elder (*Acer negundo*) that occurred as the result of infestation from invasive shothole borer (ISHB) has decreased the level of native cover in some of the Phase 1 mitigation areas. If these areas do not show signs of improvement through natural recruitment or if additional infestation from ISHB occurs, supplemental container planting may be warranted in these areas.

3.2 Nonnative Plant Control

Nonnative weed cover was found to be approximately 1 percent to 5 percent in the various Phase 1 mitigation areas. In addition, evidence of recent weed abatement activities was present in some of the Phase 1 mitigation areas. It should be noted that many of the nonnative weeds observed during the monitoring were just starting to germinate and had not gone to flower or seed and some of the annual nonnative weeds were observed to be dying out for the season. Regular maintenance and removal of nonnative weeds is of the highest priority for all of the mitigation areas to reduce competition between native and nonnative plants. In addition, eucalyptus stumps that are starting to re-sprout should be trimmed back frequently. A focus should be placed on removing the weeds and nonnatives from the basins of each of the container plants and cuttings; however, nonnative weeds just outside of the planting areas can migrate into the planting areas via seed dispersal. Outside of the nesting bird season, a focus should also be made to remove nonnative weeds in areas where least Bell's vireos are likely to nest during the breeding season (i.e., in the vicinity of the least Bell's vireo nest that was active in 2020). Nonnative plants and weeds that have gone to seed should be bagged and removed from the mitigation area. Without the use of herbicides, control of the nonnatives will be extremely difficult so the frequency and level of effort will need to be increased to provide control until the native plants and seedlings have a chance to grow and outcompete the nonnatives. In particular, it is important to maintain long-term perennial pepperweed management to reduce competition and allow native plants to germinate. In addition, dodder should be removed from container plants in the mitigation areas. Although many

species of dodder are native, this parasitic plant can be harmful to younger shrubs and trees that are not yet established and can even cause mortality.

3.3 Herbivory

Herbivory was generally not observed in the Phase 1 mitigation areas. Minor herbivory will not kill the plants, but continued monitoring should be conducted during future visits. As the plants are becoming more established, they have become less susceptible to the effects of herbivory. If browsing by rabbits or other animals begins to worsen, caging around affected and/or favored container plants may be warranted.

3.4 Erosion

Minor erosion to planting basins was observed throughout the Phase 1 mitigation areas. The severe erosion noted in DG-3A near Altadena Drain during previous monitoring visits did not show any signs of worsening. Due to the steepness of the slope in the coast live oak woodland portion of the DG-3A mitigation area, erosion will likely continue to be somewhat of an issue in this area; however, jute nettings are currently in place on the slope and will help to lessen the severity of erosion issues. As native cover increases in this area, erosion issues should lessen. The severity of the erosion should continue to be monitored in all planted areas and if warranted, erosion Best Management Practices (BMPs) should be installed in appropriate areas. This may only require the installation of straw wattles at select sites to prevent existing rills from becoming larger. However, until more native perennial plants become established in these areas, there is the potential that intense rainfall may create additional erosion problems.

If you have any questions about the information presented in this letter, please contact me at Cadams@ecorpconsulting.com or (714) 648-0630.

Sincerely,

Carley Adams
Senior Biologist

ATTACHMENT A

Field Notes

DR Phase 1 Qual

57

8/27/25
C. Adams

DR-4C

- ~10-15% of plants showing drought stress → esp SAMMEX
- Native germ: AMBACAS, PACIFIC ARTOON, PHADIS, ERICAN, ARTDRA
- Nonnative germ: CONMAC, BRANIG 21% cover

DR-4

~70% native cover

• CSS

- ~10% of plants showing drought stress ~65-70% cover
- Native germ: SOLDOU, BACSAI, ROSCAL, HETGRA, ERIFAS, ARTCAL
- Nonnative germ: BRANIG, LBPLAT 21% cover

• R₃ partum

- ~25% of plants showing drought stress ~70-75% cover
- Native germ: BACSAI, HETGRA, HELCUB, SACBRO, ERICAN, PSECAL, ARTDOU

- Nonnative germ: LBPLAT, BRANIG, CONMAC, AILALT

Bluebonnet 25% cover Rate in the Rain.

Scrub 25% cover

D6r-5

~50% of plants showing drought stress

- Native germ: ERICAN, URTDIO, BACSAL, ROSCAL

✓ Nonnative germ LEPLAT, Hordeum (1% cover)

~75-80% native cover

D6r-4B

~15-20% of plants w/ drought stress

- Native germ: CUSCAL, BACSAL, PHAADIS, URTDIO, ERICAN, ELYCAN

- NN germ: LEPLAT, CONMAT, BRANIG, <2% cover

~70-75% cover of natives

D6r-1

- Native germ: ARTCAL, ERIFAS, CUSCAL, PHAADIS, CORFIL, SALCOL, PSECAL, ALMAGRA, ERICAN, LEPISQU

- NN germ: BRANIG, Bromegrasses (1% cover)

- ~16-15% of plants showing drought stress

~60-65% native cover

DG-3A

~ 5% of plants in rip area

Stressed

~ 5% of plants in oak area
Stressed

- Native germ: AMBACA, BAESAE,
HETZRA, ARTDOL, ERICAN, QUETGR,
EPICAN

- NW germ: BRANIG, grasses
21% cover

~ 65% cover in oak 80% in rip.

DG-2B

~ 25% of plants drought

Stressed esp SAMMEX BACSA

- Native germ: HETZRA, URTDIO
AMBACA, BAEPIL, BASAL, ERICAN

- NW germ: BRANIG, CONMAC

21% cover

~ 90% native cover

DG-2A

~ 30% of plants drought stressed

- Native germ: ARTDOL, HETZRA
ERICAN, AMBACA, BASAL
AMBIPS, EPICAN

- No nonnatives obs

~ 75% native cover

ATTACHMENT B

Photo Documentation

Photo 1: Overview Mitigation Area DG-1

Photo 2: Overview Mitigation Area DG-1

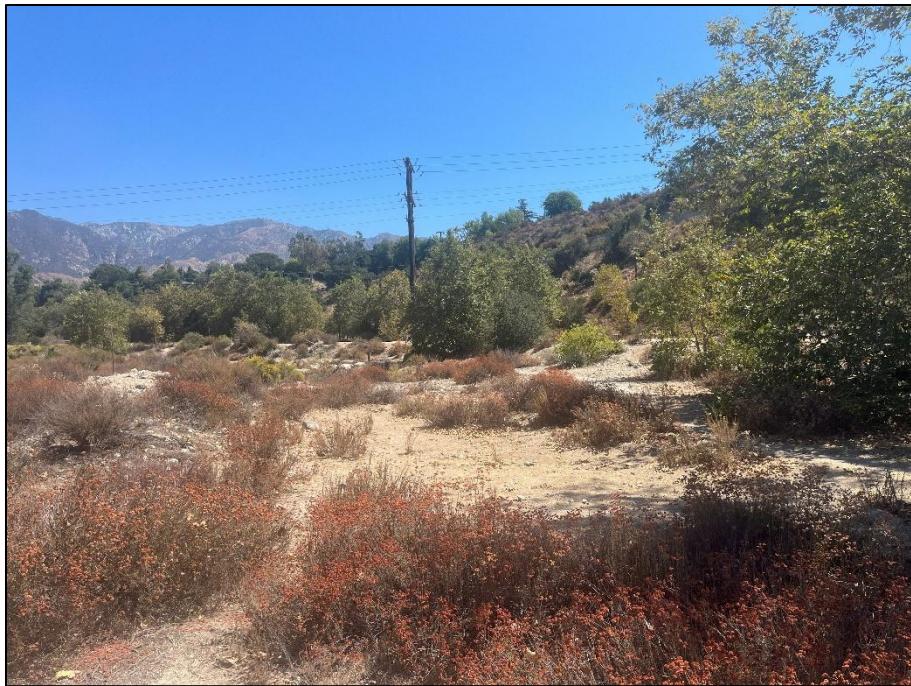


Photo 3: Overview Mitigation Area DG-1

Photo 4: Overview Mitigation Area DG-1

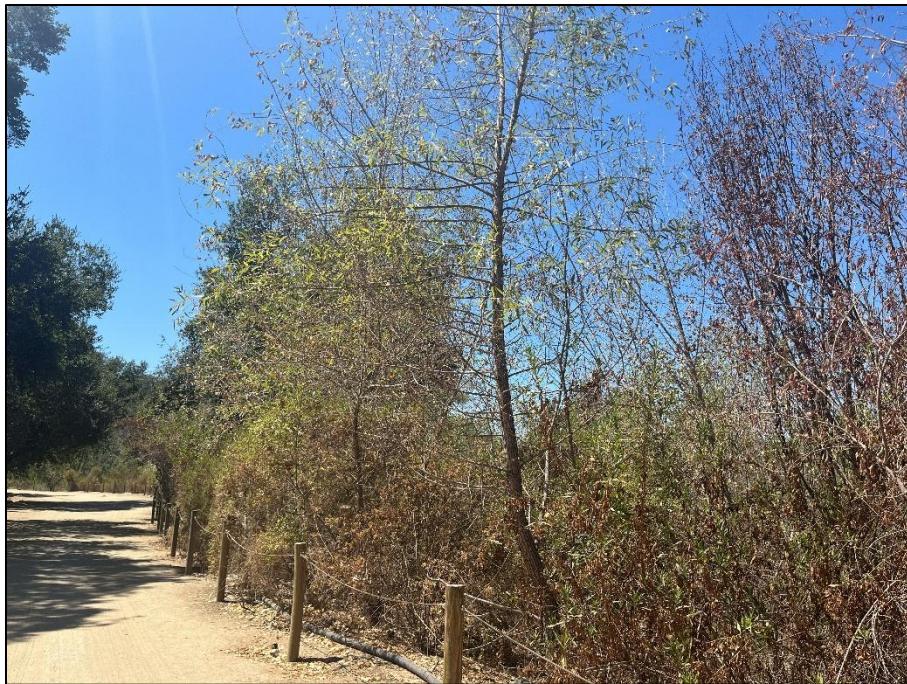


Photo 5: Overview Mitigation Area DG-2A

Photo 6: Overview Mitigation Area DG-2A

Photo 7: Overview Mitigation Area DG-2B

Photo 8: Overview Mitigation Area DG-2B

Photo 9: Overview Mitigation Area DG-2B

Photo 10: Overview Mitigation Area DG-2B

Photo 11: Overview Mitigation Area DG-3A Altadena Drain

Photo 12: Overview Mitigation Area DG-3A Altadena Drain

Photo 13: Overview Mitigation Area DG-3A Oak Woodland

Photo 14: Overview Mitigation Area DG-3A Oak Woodland

Photo 15: Overview Mitigation Area DG-3A Oak Woodland

Photo 16: Overview Mitigation Area DG-3A Oak Woodland

Photo 17: Overview Mitigation Area DG-4 CSS

Photo 18: Overview Mitigation Area DG-4 CSS

Photo 19: Overview Mitigation Area DG-4 Riparian

Photo 20: Overview Mitigation Area DG-4 Riparian

Photo 21: Overview Mitigation Area DG-4B

Photo 22: Overview Mitigation Area DG-4B

Photo 23: Overview Mitigation Area DG-4C

Photo 24: Overview Mitigation Area DG-4C

Photo 25: Overview Mitigation Area DG-4C

Photo 26: Overview Mitigation Area DG-5

Photo 27: Overview Mitigation Area DG-5